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EXECUTIVE SUMMARY 
 
The main purpose of this document is to describe the developments in Work Package 2 (WP2) regarding the 

core technologies for perception enabled reconfigurable resources. 

This includes developments in the following tasks: 

• Autonomous mobile manipulators (selection/design and customization) [Task 2.1] 

• Reconfigurable robot tooling [Task 2.2] 

• Robotic perception for the environment, process and human [Task 2.3] 

The final prototypes have been implemented in the Automotive, Aeronautics and White Goods use-cases 

within ODIN and tested in the small-scale pilots that are described in detail in deliverable D2.6.   
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1. INTRODUCTION 
 
The main aim of this deliverable is to give a final update on the reconfigurable tooling and the various 

perception tasks involved in the ODIN project. 

The reconfigurable tooling section goes into detail over the different grippers and dynamic gripper switching 

technologies, developed since the last deliverable. As objects of greatly varying size, weight, and nature need 

to be gripped, the resulting grippers vary in their focus. 

The detection tasks range from object detection and pose estimation, over quality checking, to human behavior 

estimation and tracking. The involved sensors encompass laser scanners, industrial RGB and RGB-D cameras, 

as well as off-the-shelve consumer electronics. Several improvements are demonstrated across the board for 

more robustness and accuracy. 
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2. AUTONOMOUS MOBILE AND ROBOTIC MANIPULATORS 
 
This chapter provides an overview of the current developments in the selection, design and customization of 

autonomous mobile manipulators and robotic manipulators that will be used in the ODIN pilots. The platform 

integration for each ODIN pilot is presented in the respective pilot chapter in Deliverable D2.6 ODIN Open 

Component validation report – final version [1]. 

2.1. COMAU mobile manipulator 

Respect to what already specified on D1.3 and D2.6 regarding the COMAU mobile manipulator for automotive 

pilot, the main improvements concern the safe and correct execution of the process in synchronization with 

the conveyor and the correct coupling between the two components. 

According to ISO 3691-4, the coupling of the AGV and conveyor during the inspection operation needs to be 

safety approved and, in normal conditions the AGV must detect the presence of operator during navigation. In 

order to guarantee the correct operation of the manipular on top of the AGV in this specific case, the laser 

scanner of the AGV needs to be muted, muting, as well the personnel detection. The norm allows that in the 

following conditions: 

• If the scanners of the AGV are muted in a certain area of the plant, it is considered an 'Operating 

Hazard Zone’. 

• The scanners can be muted if the speed of the AGV is less than 0,3 m/s. 

• The scanners should be muted as late as possible to ensure the absence of persons (mute only with a 

distance of 180mm from the conveyor). 

• If the muting sensor is done by additional safety equipment, it is required to achieve at least PL=d. 

• The detection of the muting operation can be performed by the safety scanner if the safety zones are 

used to detect the right position. 

Moreover, considering the ‘Operating Hazard Zone’, the following measure needs to be adopted: 

• Deactivation of scanners because of the type of application (in this case near the conveyor). 

• The ground needs to be marked to indicate the zones where the scanners will be deactivated. 

• During the time the scanners are deactivated and the AGV is in the hazard zone, it should emit 

additional acoustical and optical signals. 

• The automatic restart of the AGV should not be allowed in case the AGV is performing the muting 

operation. 
According to this contingency, after a preliminary evaluation, the solution implemented is the Use of two 

photoelectric sensors to detect the coupling of the AGV and install a reflective tape on the lateral part of the 

conveyor to be detected by the same inductive sensors. 

After an iterative discussion with PILZ and supplier based on PL calculations and feasibility of the solution, 

the SICK WLA16P-24162100A00 photoelectric sensor [2] and the reflective tape REF-PLUS-R50 [3] have 

been selected (Figure 1). 

 

Figure 1: Photoelectric sensor and reflective tape 

The several steps of the process are listed below and reported in Figure 2. 
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Step 1: Conveyor approach 

− The AGV approaches the conveyor (from lateral or front). 

− The photoelectric sensors are not detecting the conveyor. 

− The AGV must maintain the scanner fields activated at least until 180mm from conveyor. 

− Both scanner zones (ZS1 and ZS2) are activated to detect persons in every direction. 

− The robot is disabled and inside the AGV area in a standstill position. 

Step 2: Muting of the first scanner zone (ZS1)  

− The AGV needs to detect the coupling position with the conveyor. 

− The muting of the scanner starts if the distance is less than 180mm. 

− An internal monitoring of the coupling position is also needed for detecting the position. 

− The AGV needs to move in the collaborative allowed speeds (<0,3 m/s). 

− Only allow the muting function if the speed is collaborative. 

− The manipulator is still disabled and inside the AGV area in a standstill position. 

Step 3: Enabling the manipulator 

− The photoelectric sensor is now detecting the reflective tape on the conveyor. 

− The robot movement can now be enabled to start the kitting operation. 

− The safe coupling of the AGV and the conveyor is complete. 

− The emergency stop from each component needs to be linked. 

Step 4: Disabling the manipulator 

− After completing the operation, the AGV starts leaving the area. 

− The photoelectric sensors are not detecting the reflective tape anymore. 

− The AGV stops until it detects that the robot is in safe position (standstill). 

− The zone 2 of the scanner is still disabled. 

Step 5: Decoupling of the AGV 

− The photoelectric sensors are not detecting the reflective tape. 

− The mobile platform has performed the decoupling of the conveyor. 

− If the AGV is moving <0,3 m/s and distance is >180mm activate Zone 2. 

− Both scanner zones are activated to detect persons in every direction. 

− The robot is disabled and inside the AGV area in a standstill position. 

 

Figure 2: Steps of the coupling/decoupling process 



ODIN  101017141 

-9- 

Figure 3 shows the testing of the mobile manipulator during the inspection process after the coupling with the 

conveyor simulator. 

     

Figure 3: Engine inspection 

The two sensors are installed in the front side of the mobile manipulator and the reflective tape is applied on 

the assembly table. This approach is shown in detail in Figure 4. The laser light of each of the sensors is 

pointing in the center of each respective reflective tape with a slightly different angle.  

 

Figure 4: Safety sensors and reflective tapes installation 

2.2. TECNALIA mobile manipulator 

A few improvements have been performed on the mobile platform to accommodate the additional required 

sensors, as was specified in deliverables D1.3 and D2.3. 

The transport of the fan cowl (FC) poses a challenge regarding sensors since it will easily occlude sensors’ 

fields of view if not tackled properly. 2D LiDAR occlusions can be mostly solved using a FC dolly specially 

designed to minimize occlusions. However, the main 3D LiDAR must be mounted in a very high position, so 

it is able to “see” over the FC. 

An installation of the LiDAR using a 1.5m tall mast was designed and installed. The mast top was a small plate 

holding both the LiDAR and an Inertial Measurement Unit (IMU). With this mounting, the LiDAR was going 

to be far from the robot’s body. Since the transformation between the LiDAR and IMU is critical for the 

mapping algorithm’s performance, it was decided to mount also an IMU in the mast, closer to the LiDAR. 
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Figure 5: 3D LiDAR mast design 

Also, since the 3D LiDAR is a rotating element, there were some initial concerns about possible vibrations in 

such a high mast that could potentially impact the performance of the mapping/localization methods. Thus, the 

mounting was designed with the provision of some anchor points so three tightening metal cables could be 

used to increase the stiffness of the mast if required. Testing performed with the mast installed showed that the 

risk of vibrations was overestimated and no relevant impact on mapping/localization performance could be 

measured. Thus, the tightening cables were removed to avoid potential interference with the arms’ operational 

space. Figure 6 shows the final mounting of the 3D LiDAR’s mast, with the tightening cables installed. The 

tightening cables were removed in further tests, as deemed unnecessary. 

 

Figure 6: 3D LiDAR mast mounting with tightening cables 

  

Figure 7: LiDAR mast and FC dolly final configuration 
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2.3. AIC mobile manipulator 

In order to combine the existing mobile robot in the Autonomous Smart Factory (ASF), and thus demonstrate 

flexibility in advanced manufacturing processes, both the inspection process and the manufacturing processes 

will be realized by configuring the gripper's performance. 

A 3D camera is added to the manipulator gripper of the mobile robot to perform further inspections. This 

creates a challenge of location and space for this camera on the manipulator gripper for subsequent 

manufacturing processes. 

  

Figure 8: Gripper design and 3D camera installation of the AIC mobile manipulator 

After installing the conveyor belt that moves the motor when carrying out the inspection, the problem of the 

safety distances of the roto scanners of the mobile platform arises. In this aspect, both the safety systems of 

the platform and the programming of the PLCs have to be configured. This is necessary to maintain safety and 

keep the operation fully automated. 

  

Figure 9: Set up of the safety scanner and relation to the conveyor of the AIC mobile manipulator 

Finally, the configuration of the scheduling of the complete process is required. That is to say, the possibility 

of a conditioner that makes it possible to carry out the inspection when it obtains the inspection need input 

must be unified in the same programming of the manufacturing process. For this reason, the programming of 

the PLC that manages the entire pilot plant is modified, adding communication and the possibility of carrying 

out this inspection. 
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3. RECONFIGURABLE ROBOT TOOLING 
 
This chapter provides an overview of the current developments in the reconfigurable tools for the ODIN pilots. 

The integration and testing of robot tooling for each ODIN pilot is presented in the respective pilot chapter in 

Deliverable D2.6.  

3.1. Overview 

This section of the document is centralized on the final version of ODIN reconfigurable gripping tools required 

for products’ manipulation within ODIN investigated pilot lines. These tools have been designed in the context 

of a modular framework [4] for robot gripping tools with versatility in grasping and processing of different 

components based on automatic tool change solutions in Human-Robot Collaboration (HRC) assembly lines. 

In order to present and design in a more efficient way the ODIN gripping solutions, the followings aspects of 

the aforementioned framework will be presented in the following subsections: 

• Robot Gripping Tools 

• Gripper controlling system 

• Safety aspects of robot gripping tools 

3.2. Robot gripping tools  

The robot gripping tools being utilized in ODIN for the execution of the required assembly tasks are divided 

into four different categories based on their type of drive, the maximum payload of objects to-be manipulated 

and their gripping function. These developed gripping tools are presented in the following figure. 

 

Figure 10: Robot gripping tools categories 

Category A indicates a multi-vacuum gripping solution equipped with different type of suction cups in term 

of their geometrical characteristics. Based on the manipulated parts’ weight but also the requirements on the 

total weight of the vacuum gripper, a custom-made flange has been designed for suction cups installation. 

Suction cups operation utilizes a set of pneumatical ejectors. The suction cups of the vacuum gripper may be 

organized in different groups based on the geometrical characteristics of the cups and the parts to be assembled. 

In ODIN, the vacuum gripper used under the White Goods pilot for cardboard and blisters manipulation 

consists of 8 suction cups with grasping diameter 31.40mm, 2 suction cups with diameter 21.40mm due to the 

difference of manipulated parts’ geometry. 
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Figure 11: Vacuum gripper 

The Category B of the ODIN robotic gripping tools is a pneumatic flexible gripper with the ability to grasp 

light-weight objects with different geometrical characteristics. This gripper can be applied in Human Robot 

Collaborative environments due to their safety design concept. This type of gripper is the key to increase the 

flexibility of the system as objects with different geometry might be grasped with the same tool. 

 

 

Figure 12: Pneumatic flexible gripper 

Category C consists of an electromagnetic gripper enabling the safe manipulation of ferromagnetic 

workpieces by using the magnetic field of an integrated permanent magnet. These grippers’ actuations are 

based on 24V power supply. During its operation, the gripping device saves energy and ensures process-safe 

operation even in emergency stop scenarios. This gripper feedback signals to the central orchestrator 

(OpenFlow) of ODIN in case of malfunction error detected in order to stop schedule’s execution. 

 

Figure 13: Electromagnetic gripper 

Finally, category D, defines a gripping concept of high-payload gripping tools for the manipulation of big-

sized parts fulfilling the needs of the Automotive demonstrator. This is based on the usage of a steel flange 

and a set of high-payload pneumatic actuators screwed on the steel flange. After the investigation of the parts 

to be manipulated and the definition of the part’s grasping points, the model, the number and the position of 

pneumatic actuators on the steel flange is defined. Each pneumatic actuator is equipped with a steel pin be 
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designed to match the selected grasping points of the part. In order to ensure the high-payload ability of the 

gripper, extra steel pins are used to distribute the grasping force to multiple points of the gripper. 

 

Figure 14: Gearbox gripper - Motor gripper 

Versatility in grasping is supported through the robust tool change on-the-fly during the execution of the 

assembly operation under ODIN demonstrators. The on-the-fly tool exchange using tool changing solutions 

reduces thus the cycle time of the overall scenarios and the time needed for manual programming of new tools 

or control devices. Two different type of tool changers are integrated under ODIN demonstrators. A 

mechanical tool changer for low weight objects’ manipulation (objects up to 33 kg) utilized under the White 

Goods demonstrator and a pneumatical one with locking balls and a piston to lock the process for heavier 

object’s manipulation (objects up to 150 kg) installed on the AURA robot of the Automotive pilot. After each 

successful tool change operation, the tool change module is responsible to update the digital model of the robot 

used for the required motion planning procedures.  

 

Figure 15: Pneumatic tool changer in automotive pilot 

3.3. Gripper controlling system 

ODIN grippers can be either pneumatically or electrically controlled based on their drive system. A digital I/O 

board and a ROS driver is being used in order to integrate the deployed robot gripping tools with the main 

computer of the ODIN workstation. The integration of the control system with OpenFlow was the main aspect 

towards the successful interaction among the ROS interfaces and the digital I/O board ROS driver. 

Different devices can be utilized such as PLC, safety relays, robot controller etc. The connection of the electric-

based robot gripping tools is a straightforward process as each pin of the electrical tool can be connected with 

one pin from the digital board. In addition. the integration of the pneumatic-based robot gripping tools requires 

the integration of extra components to transform the electrical signals of the I/O board to compressed air flows. 

In ODIN, these extra components are pneumatic electro valves of pneumatic ejectors. 
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Figure 16: Digital I/O devices 

Feedback from robot tools’ actuation is sent back to OpenFlow thanks to the feedback signals of electrical 

robot tools or pneumatic gripper’s safety sensors. This feedback received from the digital I/O board enables 

the implementation of a safe controlling system providing information about malfunctioning tools to 

OpenFlow. 

A custom ROS action server has been prepared utilizing the required ROS messages from the digital I/O ROS 

driver. This interface receives the name of robot tool defined by the system programmer and one bool 

parameter indicating the triggering action of the tool (Enabled or Disabled).  

 

Figure 17: ROS-based control gripping system implementation 

3.4. Safety aspects of gripping tools 

This subsection focuses on the presentation of ODIN gripping tools in terms of their safety aspects towards 

the safe collaboration of human and robot in the investigated assembly workstations of ODIN. The safety 

concept of ODIN gripping tools is based either on the installation of inductive sensors and magnetic safety 

switches on these tools or on pre-existing interfaces of electrical grippers.  

Proximity and inductive sensors might be installed on robot gripping tools to safely validate the operation of 

pneumatic-based actuators and grippers. Proximity and inductive sensors are utilized to inform the PLC 

regarding the successful or failed operation of a pneumatic gripper. Proximity sensors are used to receive 

feedback from the actuation of the piston inside the pneumatic device. On the contrary, inductive sensors are 

utilized to receive feedback about the successful locking operation by the grasping pin placed at the end of a 

pneumatic actuator or gripper. Extra pneumatic valve with a couple of pneumatic switches has been installed 

before the pneumatic manifold with electro valves to monitor possible failures in air pressure of the system. 

The pneumatic valves of the system can grasp the air pressure after them in case of emergency stop. An 

interlock mechanism consisted of a couple of pneumatic actuators has been designed to be implemented in the 

gripper construction as a mechanism to increase the stability of the manipulated part during the assembly 

process. In the case of electrical grippers, their electrical signals can be used as inputs to PLCs to validate the 

safety concept of the pilot. 
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Figure 18: Pneumatical valves with manifold 

Based on the risk assessment conducted under WP5 by PILZ, it was suggested to cover the magnetic and the 

flexible grippers of the White Goods demonstrator with extra aluminium cylindrical covers with soft material 

pads on their outer surface. For the vacuum gripper, its complex geometry did not allow the installation of 

safety covers. In this case, a magnetic safety switch is installed on each side of a tool change system enabling 

the safety validation of a tool change operation to inform the system when the vacuum gripper is equipped on 

the robot arm. If this tool is attached on the robot, a different safety concept is applied by the PLC in case of 

human presence in the shared HRC area. More information on the safety concept applied in each ODIN pilot 

line in terms of the Reconfigurable Robot Tooling are presented in deliverable D5.4. 

 

Figure 19: Magnetic safety switches integration on White Goods vacuum gripper 

The integration of safety electrical magnetic grippers increases also the overall safety of the framework. 

Magnetic grippers may be characterized as safety ones as they ensure reliable process operation even in 

scenarios with emergency stop functionality or electrical power loss. 
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4. ROBOTIC PERCEPTION OF THE ENVIRONMENT, PROCESS AND HUMAN 
 
This chapter provides an overview of the current developments in the robotic perception modules of the 

environment, process and human. The integration of the modules in each ODIN pilot is presented in the 

respective pilot chapter in [1]. 

4.1. Object pose estimation using CAD models 

As documented in the previous deliverables, a major perception task is the localization and pose estimation of 

objects, such that the robots can interact with them. This ranges from cooktops, transformers and knobs in the 

White Goods pilot to the drilling templates for the Aeronautic pilot, as well as the motor and gearbox for the 

Automotive pilot. 

For the automotive pilot, we need to localize a motor, to subsequently grip it using the robot. This detection is 

performed using the ROBOCEPTION CADMatch [5] module as a baseline and extensions developed in this 

project. As the motor itself is an assembly of hundreds of parts, not all of which are mounted rigidly, it does 

not match the CAD model perfectly. And as the motor is very heavy, the gripper needs a tight fit, and cannot 

be designed with a lot of play, requiring a very precise localization, with deviations of less than approximately 

1mm. To achieve this accuracy requirement, ODIN investigated detecting the rigid mounting points, instead 

of the full motor. These mounting points are simple parts that do not change and fit the CAD perfectly. 

 

Figure 20: The motor, which will be grasped at the two mount points 

The detection of the cooktop burner cups has undergone a robustification period, where the template provided 

by ROBOCEPTION was improved to deal with empty blister spots. As these spots are the same colour, 

reflectance, and shape as the cooktops themselves, these were sometimes recognized as such. To prevent these 

false detections, the synthetic training data generation pipeline was extended to automatically generate such 

data. This is done by indenting the simulated floor in a manner similar to real world blisters. Additionally, as 

this data is available, both in the demonstrator, as well as in the real-world, real sensor images were used for 

the retraining. 
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Figure 21: Left: Object bounding box detection before/after retraining, Right: Synthetic data blister 

packaging 

4.2. Spatial Object Detection Module 

This section aims to offer thorough documentation regarding the deployment of the detection module designed 

for identifying both motor’s central axle and alignment holes in the context of Automotive pilot. The 

foundation of this module is a trained CNN (Convolutional Neural Network) approach deployed on a custom 

dataset. The module manages object recognition and classification, as well as position identification and as a 

result provides the ROS frames related to the robot’s movements for the alignment process between the motor 

and gearbox. 

Using advanced deep learning methods, this vision system demonstrates adaptability in detecting small objects 

such as motor holes. The implemented architecture of this one-stage object detector, which directly provides 

bounding boxes and category probabilities for various objects in a single pass of the network, is a customized 

version derived from the YOLOv8 model. The extracted confidence scores indicate the model’s confidence in 

the predicted box’s accuracy and to whether the box contains an object. Subsequently, a post processing step 

called Non-Maximum Suppression (NMS) is applied to avoid detecting multiple bounding boxes for the same 

object, by discarding all but the highest-scoring bounding box for each detected object. 

The most critical phase in deploying the model revolved around the creation of a high-quality dataset. Given 

its data-driven structure, the acquired images required careful and detailed labelling (Figure 22). Consequently, 

a significant number of images were collected and labelled and subsequently divided into three sets: training, 

validation, and testing datasets. The training set, comprising 250 images, was employed to educate the model. 

The validation set, consisting of 56 images, was used for fine-tuning hyperparameters. Finally, the testing set, 

consisting of 24 images, served the purpose of assessing the final performance of the model. 

This detection module ensures robust detection performance even in the presence of environmental variations 

or changes in component orientation. To compute the coordinate values, the depth information of specific 

regions of interest, derived from the detection process, is obtained using 3D data acquired from the sensor. 

Employing pinhole camera model equations, the system computes the coordinates of both the alignment holes 

and the central axle hole of the motor. Using this information, the robot has available the necessary alignment 

positions before proceeding to the assembly process. 

 

Figure 22: Labelling process for the creation of the dataset 
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4.3. Quality check OK/NOK 

The quality check solution, as it was presented in the previous deliverables has been used in the small-scale 

pilot at LMS and works as expected. As the motor is a relatively dark object, with some highlights like screw 

heads, the new HDR mode of the rc_visard [6] has shown to improve the exposure and subsequent quality 

classification. The models of the parts under inspection were updated to reflect this change in camera setup. 

As the motor setup is changed, the training data will have to be updated. 

 

Figure 23: Left: Auto-Exposure – difficult to expose bright and dark parts equally, Right: HDR mode 

automatically balances exposure 

While the module was initially planned as just classifying OK/NOK in a given region of the input image, this 

has shown itself to be potentially too brittle. As the motor is on a conveyor belt, and not fixed, and the camera 

on a mobile platform, there can be relative shifts in the position of the camera to the motor. These shifts will 

make the previously assumed regions of the image unreliable. Thus, a new approach has been suggested and 

implemented: 

After the mobile platform and the motor have stopped moving, the motor is localized by the camera. This 

establishes the relative location of the former to the latter. Now this information, together with a model of the 

motor will be used to compute the image regions on-the-fly. As such the shifts should not have any effect on 

the classification anymore. This approach was initially tested in the small-scale pilot at LMS and will be 

evaluated in more detail in the pilot installation in WP5. 

 

 

Figure 24: Process of on-the-fly Region of Interest (ROI) computation for part OK/NOK classification 

To facilitate the robust (but not highly accurate) pose estimation of the motor, a 3D scan of the motor was 

performed. This textured 3D-scan was used to train better object localization and pose estimation neural 

networks. 
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Figure 25: The 3D-scanned model of the motor, with and without texture 

The quality check of engine process developed by DGH in Task 2.3 was implemented and presented in AIC 

workshop inside of the partial installation of the small-scale pilot in automotive use case.  

This software is separated in a learning and production part and was initially described already in Deliverable 

D2.3. The software tool has been finalized with all the controls with 2D cameras. In the remaining project time 

DGH worked on integrating the controls with 3D camera so that the work in this task is closed in time. Small 

adaptions may be made during the installation of the pilot in the end customer site. In parallel, DGH has been 

working on the implementation of this system in the final Automotive use case demonstrator design in 

STELLANTIS premises (end customer site). 

More specifically DGH worked on the implementation of the different quality check methods imbibed in the 

software. Figure 26 shows the DGH learning tool with all the methods available to use in engine Quality 

Inspection (QI) process: 

 

 

Figure 26: DGH Quality inspection learning tool and process 

DGH has been working in implementation of anomaly detection and object detection methods, and in the final 

period DGH want to see the possibilities of classification method like a new method to use in quality inspection 

process. 

DGH was also working on the production tool showed in the Figure 27. This tool is centralized in the results 

of engine quality inspection process and it will be implemented in the final demonstrator on STELLANTIS 

premises in third quarter of 2024. 
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Figure 27: DGH production tool for QI process 

Figure 27 shows the quality inspection process results that the operator will see in the future final demonstrator 

on STELLANTIS premises. Both tools are integrated in DGH Deep Learning Human Machine Interface 

software module. 

4.4. Perception for screwing while moving operations 

In the screwing while moving scenario, after the initial prototype, several conclusions have been extracted by 

TECNALIA. 

On the one hand, the detection frequency was a key issue in the initial tests; a frequency of 10Hz was 

insufficient to show stable behavior on the control loop. Therefore, increasing the detection frequency was a 

priority for the development. 

On the other hand, even if it is not as crucial as the first point, the improvement in the image quality will help 

to increase the precision of the process. 

Based on these conclusions, two main decisions have been taken in the perception of the screwing while 

moving operations: 

• The initial decision is to shift the vision from Alvar AR tags to an ArUco marker detection algorithm 

which offers a fast and reliable pose estimation approach. Using this new detection approach, the 

detection frequency increased from 10-12Hz up to 23-25Hz.  

 

Figure 28: ArUco marker on the engine cover 

• Additionally, it was decided to shift from an RGB-D camera (RealSense) [7] to an industrial 2D 

camera to increase the quality and resolution of the image and, therefore, increase the precision. 



ODIN  101017141 

-22- 

Specifically, the camera is an IDS UI-5240CP [8], with a resolution of 1280x1024 and a frequency of 

up to 60Hz although with the ambient light conditions  of the scenario, the frequency was set to 

25Hz to obtain good quality images. 

 
Figure 29: IDS camera on the front part of the mobile platform 

From the software point of view, the development relies on the aruco_ros package [9] which allows a fast 

detection from a continuous image flow provided by an image topic. The tests carried out in the real setup 

provided a stable detection of the markers with a frequency which varies between 23 and 25 Hz. 

 

4.5. Object inspection of Aeronautics mechanical assemblies 

In continuation of the research efforts conducted in the preceding prototype phase, TECNALIA has 

successfully integrated a 3D reconstruction system onto a Universal Robots (UR) arm, which is equipped with 

the Photoneo MotionCam-3D sensor [910] mounted on the flange. This setup allows for scanning of the fan 

cowl. 

The 3D sensor has been calibrated using an eye-in-hand configuration, i.e. finding the rigid transformation 

between the robot’s last link and the camera’s reference frame. The camera’s manufacturer has commercial 

tools available to perform the calibration, which mostly rely on using calibration patterns. In this case, we 

leverage the fact that the sensor provides both RGB and point cloud data, where the RGB image and the point 

cloud data are registered, allowing one to use 2D image-based calibration techniques which are easier to 

implement and to perform. 

This methodology involved the generation of Cartesian trajectories designed to cover the fan cowl while 

ensuring that it is always in the field of view of the sensor, i.e. there is no configuration change in the robot 

joints which would move the sensor’s field of view away. The Photoneo sensor, operating at a frequency of 

10Hz, continually acquires point cloud data. This is one of the main advantages of the MotionCam-3D sensor, 

which uses a technology based on structured light named “parallel structured light” and allows to generate 3D 

point clouds in movement. This contrasts with traditional structured light, which relies on the projection and 

capture of a sequence of patterns which forces the sensor to be still while capturing. 

Subsequently, a process of point cloud fusion was applied to construct a coherent and unified representation. 

This fusion was facilitated by the utilization of Voxblox, a library which employs Truncated Signed Distance 

Fields (TSDF) to fuse the point clouds in a computationally efficient way. The resultant TSDF representation 

was then transformed into a mesh, enabling the generation of a detailed and informative 3D reconstruction of 

the scanned object. 
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Figure 30: Inspection operation using photoneo sensor 

 

Figure 31: Left: a snapshot while scanning; the white point cloud is the current capture from the 

sensor which is being fused with the reconstructed part. Red: the mesh exported from the 

reconstructed TSDF 

As mentioned above, the MotionCam-3D can produce a continuous stream of point clouds while moving. This 

is called the “camera mode”, as opposed to the “scanner mode” in which the sensor can also operate. In “camera 

mode” the Z resolution of the measurements, for example for the MotionCam-3D S model, which is the one 

used in these experiments, goes from 0.15 mm of accuracy and 0.05 mm of temporal noise in the “scanner 

mode” to 0.3 mm accuracy and 0.1 mm of temporal noise in the “camera mode”. 

However, one difficulty is that the ROS driver provided by the manufacturer [11] does not implement correctly 

the “camera mode”, as some open issues [12] in the repository point out. To be able to perform the scanning 

of the fan cowl while moving, the “camera mode” functionality has been implemented in a branch of a forked 

repository [13]. Another functionality required, that the official driver is lacking, is related to providing the 

intrinsic calibration of the sensor. The manufacturer provides an executable file [14] that can be used to export 

the intrinsic calibration which is stored in the sensor’s firmware. However, most ROS nodes that use images 

as input expect that the sensor calibration is provided as a sensor_msgs/CameraInfo message. This 

functionality was implemented in the custom driver [15]. 

Regarding the detection of the components mounted on the fan cowl, the challenge is to detect them and 

estimate their 6D pose so that not only presence/absence is checked, but also the correctness of the placement. 

In the Computer Vision community, the BOP Challenge [16] is a well-known challenge whose objective is 

very well aligned with this objective, i.e. “capture the state of the art in estimating the 6D pose, i.e. 3D 
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translation and 3D rotation, of rigid objects from RGB/RGB-D images.”. The algorithms with better 

performance in this challenge are based on deep learning, either convolutional networks, transformers, or smart 

combinations of those. Those algorithms have a strong requirement, which is the existence of big datasets to 

train. Labelling point clouds is hard work, which is why one of the advances pushed by the BOP Challenge is 

the combination of real and synthetic datasets. 

To generate a synthetic dataset that can be used to train the 6D pose estimation algorithms, TECNALIA used 

the BlenderProc [17] library. BlenderProc cannot only render photorealistic images, but it also allows to 

generate random scenes with 3D data, add distractors, and produce the ground-truth 2D/3D data that can later 

be used to train a model. Moreover, BlenderProc has been integrated with the BOP Challenge, which allows 

both to load datasets in the BOP format, and to generate the data structure required by the models in the BOP 

challenge for doing the training. 

TECNALIA used as base the T-LESS dataset [18] due to its relevance to the use case: it contains 30 industry-

relevant objects, which can be used as distractors to train our model. 

 

Figure 32: Objects and scenes in the T-LESS dataset (source T-LESS dataset homepage) 

One of the elements mounted on the fan cowl was extracted for the experiments with BlenderProc (shown in 

Figure 33). Combining the target element, with the other relevant elements contained in the T-LESS dataset, 

we were able to generate a dataset composed of the RGB render images shown in Figure 34 and Figure 35; 

this dataset is accompanied by the relevant json files containing the information to be used in the training as 

ground truth information, such as the 6D pose, camera calibration and so on. 

 

Figure 33: CAD model of the fan cowl element extracted 
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Figure 34: Two example renders including the class object, distractors and random backgrounds 

 

Figure 35: Left: mosaic of different RGB renders; Right: mosaic of the synthetic depth images 

4.6. Human body skeleton and human motion detection 

The robot perception module for human body skeleton detection and human motion recognition is developed 

to facilitate the proactive Human-Robot Collaboration (HRC) in industrial pilots. The previous deliverables 

mainly describe the calibration of the robot (the calibration of the camera and the hand-eye calibration of the 

robot, Figure 36 (a)), the detection of human body skeleton with 15 body joints using human pose estimation 

method (Figure 36 (b)), and the prediction of short-term human motions (Figure 37). Based on these results, 

this deliverable will elaborate on the improved development of the perception module as well as the extensive 

testing results on the KTH small-scale pilot.  

 

Figure 36: (a) Calibration of a human-robot-camera system; (b) Human body skeleton captured from 

Kinect sensor 

 

Figure 37: Deep-learning-based human motion prediction 
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4.6.1. Human body skeleton detection 

Several cutting-edge solutions have been explored for the detection of human body skeleton. The Kinect V2-

based method is employed as the basic and main solution for current deployment. To improve the robustness 

of detection under occlusion and low light conditions, deep learning-based human pose estimation algorithms 

are further developed as alternative solutions. 

The Kinect V2 sensor consists of an RGB camera, a 3D depth sensor, and multi-array microphones (shown in 

Figure 38 (a)). A total of 25 body joints are detected based on the calculations from the RGB camera and 3D 

depth sensor (as shown in Figure 38(b)). Multiple persons in the field of view can be simultaneously analysed 

for skeleton detection. For each detected body joint, the result includes the 3D cartesian position (x, y, z) and 

3D orientation (w, x, y, z) with respect to the Kinect V2 coordinate system, as well as the tracking state and 

restriction state. The Kinect V2 sensor is calibrated first in the HRC system, and the obtained position is 

normalized. To further enhance the smoothness and consistency of joint positions in successive snapshots, the 

Unscented Kalman Filter (UKF) is implemented upon the original trajectory of values. To validate the 

effectiveness of UKF for reducing the noises in raw measurements of position, a working action is performed 

and the lengths of directly connected joints are calculated for the cases of without filtering and with filtering. 

Figure 39 shows the results for some of the joints. It can be observed that the lengths are closer to being 

constant after filtering. While the lengths for a physical human must be constant, the raw measurements contain 

obvious noises and thus oscillate around the actual values. The differences between the raw measurements and 

filtered values are visualized in Figure 40. Moreover, some results of the Kinect V2-based solution in the KTH 

small-scale pilot are demonstrated in Figure 41. For the top two images, the full human body skeleton is 

detected, while for the bottom two images, only the upper part of the skeleton is detected due to the constant 

occlusion by the desk.  

 

  
(a) Kinect V2 sensor 

 
(b) The skeleton model 

Figure 38: The Kinect V2 sensor and the corresponding skeleton model. 



ODIN  101017141 

-27- 

 

 

 

Figure 39: The comparison between the length calculated from raw measured positions and UKF 

filtered values for left & right elbow-wrist and left & right wrist-hand.  

 

 

Figure 40: The comparison between the raw measured positions and UKF filtered values for left & 

right wrists and left & right hands. 
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Figure 41: Some results of Kinect V2-based human body skeleton detection in KTH small-scale pilot. 

Besides the Kinect V2-based solution, the second solution features a deep learning method for 3D human pose 

estimation. The state-of-the-art Multi-Hypothesis Transformer (MHFormer) [19] is employed which involves 

the stages of multi-hypothesis generation, self-hypothesis refinement and cross-hypothesis interaction. It is 

pre-trained on a large-scale public dataset called Human3.6M and transfer learning is used to finetune the pre-

trained model on the limited data of industrial HRC scenarios. This solution has the advantages of being able 

to customize the model for occlusion case and sometimes being more accurate than traditional Kinect V2-

based solution. However, the speed and requirement of GPU can be potential issues when deploying this 

solution in real pilots. Besides, it is necessary to finetune the model for a specific pilot case (collecting new 

data).  

 

 

Figure 42: Some results of deep learning method on the industrial HRC scenario. 
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To inherently solve the occlusion issues, a multi-camera solution is further investigated. This solution exploits 

the cameras from different perspectives to complement each other. The Adaptive Multiview Fusion (AdaFuse) 

method [20] is utilized that determines the point-point correspondence between pairs of camera views based 

on the heatmaps and learns the weights of these views for fusion. The Occlusion-Person dataset is used to 

perform experiments which contain 20.3% occluded joints and 8 cameras (Figure 43). Some preliminary 

results of AdaFuse on the dataset are shown in Figure 44. The occluded joints in some views can be well 

estimated by the information from other views. As long as multiple cameras or multiple Kinect V2 sensors are 

present in the pilot cases, this solution can address the occlusion issues for more robust human body skeleton 

detection. 

 

Figure 43: The details of Occlusion-Person dataset compared to existing datasets. 

 

 
(a) Scenario 1 (top: ground truth, bottom: prediction) 

 

 
(b) Scenario 2 (top: ground truth, bottom: prediction) 

Figure 44: Some results of AdaFuse on the Occlusion-Person dataset.  

4.6.2. Human Motion Recognition 

Based on the promising performance of human body skeleton detection, the real-time motion recognition is 

further developed. A multimodal deep learning method is mainly illustrated here. Furthermore, the application 

of such method in the KTH small-scale pilot and other pilots is demonstrated. Extensive results are also shown 

to justify the effectiveness of the developed method. Figure 45 below summarizes the overall architecture of 

the developed method. 
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Figure 45: An overview of the developed method for human motion recognition. 

Three input modalities are considered: detected human body skeletons, RGB video frames, depth maps. The 

skeletons directly reflect the topological movements of human body and the human intentions. Meanwhile, 

RGB video frames can capture the context information that is not encapsulated in the skeletons, such as the 

interacting objects, the used tools, the workbench, etc. The depth maps further represent the distances in space, 

thus avoiding the confusion of similar motions due to camera perspective. With these three modalities it is 

sufficient to identify the ongoing human motions. In terms of the processing of human body skeleton sequence, 

Spatial-Temporal Graph Convolutional Networks (ST-GCN) [21] is employed that exploits the graph 

representation of skeleton and learns spatial-temporal patterns from the evolving sequence of skeleton graphs. 

In terms of the processing of RGB video frames and depth maps, Inflated 3D ConvNet [22] is used to extract 

the deep semantic features from the raw inputs. These features are progressively fused at each depth level with 

the attention mechanism. Eventually the deep semantic features and the spatial-temporal features from skeleton 

sequence are fused and connected to a dense layer for the final recognition result. Figure 46 below shows the 

general details of such multimodal method. 

 

Figure 46: The technical details of the developed human motion recognition method. 

4.7. Human Detection and Object Localization 

The human detection and object localization can be performed with a set of depth cameras. The deliverable 

D2.5 sums up the process used to calibrate them with a robot and provide a depth map of the scene. Also 

applying presented perception methods are discussed in D2.5. 

4.7.1. Generating robust imaging data 

To improve safety and the operator’s ability to interact with a robot, we provide a set of SW modules for the 

efficient monitoring of the scene. The first module consists of producing a robust data representation of the 

scene that can be used later to monitor the scene activity. First, we use a depth camera(s) such as the Azure 

Kinect to obtain a raw representation as point cloud(s). Then, the module generates and streams a depth map 

of the scene (Figure 47). 
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Figure 47: Left – Raw point cloud generated by the depth camera. Right – Depth map generated by 

the module. 

The module first aligns the point cloud(s) with the robot space in order to share the same coordinate frame. It 

is also possible to align and combine multiple point clouds originating from several cameras. This way, the 

scene’s surface/volume increases and can be useful if the operator needs to operate on a large area. Gathering 

the raw point clouds from multiple depth camera consists by transforming the point clouds to the robot frame 

first, then combine the point clouds with the help of the ICP (Iterative Closest Point) algorithm. Once all of 

them are perfectly aligned together, the component can finally generate the global depth map (Figure 48). 

   

Figure 48: Left – Two point clouds merged together. Right – The global depth map generated. 

4.7.2. Detect Interactions 

Several SW modules are developed for detecting the various interactions with the system. These are related to 

smart interfaces, border crossing, border monitoring, and safety zone monitoring. 

4.7.2.1. Smart Interfaces 

The second module implements the detection of interactions from the operator with an interface. As presented 

in D2.5, the system has to detect if the operator is interacting with the projected user interface.  

When a user interface is created, the module transforms the location of the virtual buttons from the RGB 

camera to its depth counterpart. This way, the system can locate the buttons within the global depth map. Then, 

the module monitors sudden change of depth in these coordinates to detect if the operator clicked on one or 

several buttons of the projected interface. This is illustrated in Figure 49. 
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Figure 49: Left – Location of the interface buttons in the RGB space. Right – Point cloud 

representation of these buttons. Here, the operator clicks on second button which consist of hovering 

his hand over the element. 

4.7.2.2. Border Crossing 

The third module is in charge of detecting the crossing of virtual borders placed around the robot. Border itself 

is dynamic and adapts based on the movement of the robot. The setup is described more in detail in D2.5. A 

border can be static or dynamic, and the detection consists of monitoring sudden changes in depth on the line 

of the border. Occasion is illustrated in Figure 50. 

 

Figure 50: Crossing of a dynamic border around a robot. Left – the change of depth indicates the 

presence of the operator/obstacle. Center – UI and view from camera. Right – A violation signal 

containing the location of the crossing is sent out. 

Regarding static borders, the monitoring of depth alone is not sufficient. Indeed, the robot can cross borders to 

place objects inside them. To avoid confusion between the operator and the robot, a hand detection module 

completes the depth monitoring to ensure safety. Then, a violation happens only if there is a sudden change of 

depth and if that change location correspond with side/direction of an approaching hand. The hand detection 

takes place in the RGB space, and the hand’s coordinates are projected to the global depth map. 
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Figure 51: Left – Hand detection in the RGB frame. Middle – Virtual border raising a violation event 

at the arrow location. Right – Global depth map. 

4.7.2.3. Border Monitoring 

In addition, a module monitors the occupancy of the static borders (slots) so the robot knows which slot is 

empty and available to place an object for the operator. This module registers in the context of a booking 

system where the robot can book a border to place an object inside the slot. The description of the booking 

system is available in D2.5. 

The occupancy of static border (slot) is defined through the depth value within each border. After calibrating 

the module, the system can recognize any changes in depth inside the borders and interpret the results (Figure 

52). 

   

Figure 52: Left - the four slots (static borders) are occupied by boxes. Right – One of the slot is free 

(second from the top). 

4.7.2.4. Safety Zone Monitoring 

Finally, the system is able to display and monitor safety zones on the floor. The projection of these zones is 

defined in D2.5. The zones are designed to provide a supplementary level of safety for the operator e.g. when 

interacting with a large robot. The zones are used to make visible for the operator the areas monitored by the 

safety systems and sensors, such as light curtains and laser scanners. A laser scanner is situated at the base of 

the robot and depending on the calibration, it can detect the operator within a certain range. Three zones are 

defined: safety, warning and danger zone and these ones can vary according to the industrial environment. The 

module retrieves data from the laser sensor at high-speed rate and check if a person is detected. In that case, 

the distance between the sensor and the operator serves as basis to decide in which zone to situate the operator. 

Depending on the zones, a visual warning is projected on the floor. If the operator is located within the danger 

zone, a violation event is thrown, and the robot stops all operations. 
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5. CONCLUSIONS 

 
This deliverable summarizes the final versions of the ODIN core technologies for perception enabled 

reconfigurable resources. These have been integrated in the different mobile manipulators and also stationary 

setups. The algorithms and tools have been tested extensively in the small-scale pilots. The implementation 

details and test results can be found in [1]. A selection of technologies that have performed well in the small-

scale pilots have been transferred to the final demonstrators at the end customer sites in work package 5. They 

will be tested extensively on the end customer sites in the final year of the project. 
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6. GLOSSARY 
 

AGV Autonomous Guided Vehicle 

AMM Autonomous Mobile Manipulators 

AR Augmented Reality 

ASF  Automotive Smart Factory 

CNN Convolutional Neural Network 

DL Deep Learning 

FC Fan Cowl 

GUI Graphical User Interface 

HDMI High-Definition Multimedia Interface 

HMD Head Mount Display 

HRC Human Robot Collaboration 

IMU Inertial Measurement Unit 

QI Quality Inspection 

PLC Programmable Logic Controllers 

REST-API Representational State Transfer Application Programming Interface 

RGB Red Green  Blue - [Three channels of colour vision sensor] 

RGB-D Red Green Blue – Depth. [Four channels of colour vision sensor with depth] 

ROS Robot Operating System 

SRP/CS Safety Related Parts of Control Systems 

ST-GCN Spatial-Temporal Graph Convolutional Networks 

ToF Time of Flight 

UI User Interface 

USB Universal Serial Bus 

VR Virtual Reality 

Web GUI Web-based Graphical User Interface 
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